
REPORT : LOGO Learning and Teaching Style s

TEACHING YOUNG CHILDREN TO PROGRAM I A LOGO TURTL E

COMPUTER CULTUR E

Cynthia J . Solomon *
80 Ellery Stree t

Cambridge, MA 0213 8

What programming knowledge and skills can a young child acquire? This question is n o
longer shocking although it remains unanswered . Now that the computer presence is clearl y
a growing part of our lives, the notion that 6 and 7 year olds could learn to program doe s
not bring scorn and doubt into audiences ' minds .

This paper describes a particular computer culture and environment in which youn g
children have learned to program . The child as problem-solver is discussed in terms o f
three identifiable cognitive styles ; and finally, some teaching strategies are suggeste d
which take into account these different learning styles .

The Computer Cultur e

"LOGO" is the name of a programming language, but it is also used as the name of a n
environment, a culture, a way of thinking about computers and about learning and abou t
putting the two together . The environment is made of ideas, of things, and of people .
The things include not only the computer, but computer controlled devices like turtles .
There are mechanical turtles which move along the floor and are often equipped with touc h
or light sensors, and there are also graphics turtles, which live on TV-like screens wher e
they draw in phosphor white or in multi-color . The computer system which gives life t o
all of this understands the LOGO language . The computer and the programming languag e
play a vital role in creating an exciting atmosphere where programs, people, turtles an d

other computer controlled devices interact with one another and learn from one another .
In the environment people become researchers, and actions and ideas take on animat e
qualities . Ideas from computer science like naming, procedurization, and debuggin g
become intermixed with anthropomorphic thinking to become lively tools in problem-solvin g
situations .

Different turtle types naturally develop distinct attributes, but there are also commo n

elements . For example, the turtle's state is its position and its heading . Its state can
be changed by either telling it to go FORWARD (or BACK) a number of steps or telling it t o

turn RIGHT (or LEFT) some number of degrees . It can also leave a trace (PENDOWN) of it s

path or not (PENUP) .

* My thanks to Seymour Papert for his help over the years and his comments on this paper .

ACM SIGCUE BULLETIN

	

July, 1978

	

p .20



REPORT : LOGO Learning and Teaching Style s

While the culture is closely tied to turtles, it is certainly more universal . The
turtles were invented as vehicles to convey this culture to beginners . They make certain
images more vivid and certain ideas more concrete . But the goal is to convey these idea s
and images, to make them real, comfortable, personal for a beginner of any age .

A Functional Descriptio n

Functionally, the LOGO environment is made up of the following :

(1) a computer

(2) a programming language and an operating syste m

(3) a collection of computer peripherals, usually including graphics an d
turtles

(4) a collection of project s

(5) a meta-language - a consistent way of talking about the language, th e
projects, etc .

(6) a relationship between teacher and learne r

(7) a collection of "bridge activities" like juggling, puzzles, etc .

All of these components are interdependent and the special virtues of the environment
follow from their coherence with one another . Taken individually, they have no grea t
merit or utility . For example, one would expect very limited educational benefits t o
come from teaching programming, even LOGO programming, in an "abstrac t " environment or
from using turtles as toys without a vision derived from the computer culture .

The design of the LOGO environment as a whole is strongly influenced by certain genera l
ideas of which three are particularly relevant to work with young children : procedurization ,
anthropomorphization, and debugging . The following three sections discuss these in turn .

A Procedural View of the Worl d

A procedural view of the world touches upon all aspects of our culture . Taken in its
simplest sense, a procedure is a description of how to do something, and when applied t o
the world, leads to a perception of complicated processes in terms of subprocesses . That
is, complicated processes are reduced to an interconnected cluster of simpler processes ,
each of which can be clearly described . In the LOGO world, whether a child is learnin g
to walk on stilts or to juggle three balls or to make the turtle walk in a square, th e
main intellectual activity is to look for a set of procedures which, when knit together ,
will do the job . The intellectual environment we are describing is designed to exploi t
this commonality in order to channel prior real-world procedural knowledge into th e
service of mastering the computer and also to channel whatever is so learned back int o
improvements of knowledge about the non-computer world .

ACM SIGCUE BULLETIN

	

July, 1978

	

p .21



REPORT ; LOGO Learning and Teaching Style s

As a support to procedural thinkin g, emphasis is placed on giving words meanings, namin g
processes, and making descriptions for how to do things . These ideas are embodied in LOGO ,
the programming language . (A real attempt was made to minimize the formalisms of languag e
so as not to detract from naming, procedurizing, subprocedurizing, recursion . Further
work is needed here and become dramatically apparent in work with young children . )

An Anthropormorphic View of the Compute r

Anthropomorphizing, "ascribing human characteristics to non--human things " , has been a
natural way to understand aspects of the world . It can also be seen as a powerful proble m
solving tool . Its pervasiveness is supported by the fact that we talk about a "LOCO turtle
environment " or a "computer culture " or "LOGO worlds " , etc ., and are understood . Turtles
themselves are concrete realizations of this thinking . On a more abstract level, program s
as well as turtles are looked at anthropomorphically . This gives rise to powerfu l
teaching strategies such as the use of metaphors like ""playing computer " , "being the
turtle", "being the procedure", "naming the actors and describing their roles", "teachin g
the computer new words " , "teaching the turtle how to do something" . A further extension
of these teaching strategies is embodied in the idea of encouraging young students t o
think of themselves as studying turtle behavior or computer behavior in order to lear n
about themselves--both how they are the same and how they are different . Thinking in
terms of using what we know in order to teach the computer requires us to know some o f
its essential attributes as well as our own, and at the same time feeds into and i s
supported by a procedural view of the world .

Debugging

The important message that comes from ideas about debugging is that we learn from ou r
mistakes ; that the intricate process of making things work or learning new skills has t o
do with hypothesizing, testing, revising, etc .

When debugging is embedded in a computer world where procedural and anthropomorphi c
thinking come into play the process becomes one of the most engaging activities in th e
environment . Children collect, classify and enjoy bugs . Sometimes bugs are serendi-
pitously adopted as features worth perpetuating, sometimes procedures must be constructe d
to deal with the phenomena caused by their appearance, and sometimes the bugs and thei r
side effect need to be removed . But in this pursuit, children become creative researcher s
studying behavior, making up theories, trying out ideas, etc .

A Philosophy of Learnin g

To the extent that the children are really able to see themselves as "creativ e
researchers " , they are learning something much more important than using computers .
We believe that the computer when used as proposed here is the ideal carrier for thi s
self-image of learner-as-researcher .

This approach applies to teachers as well as students . When I teach LOGO, I honestl y
see myself and the child as engaged in a genuine joint research activity : we are jointly
trying to understand what is happening in the unique situation created by this turtle

project . The exact situation really has never occurred before . It poses problems I hav e

ACM SIGCUE BULLETIN

	

July, 1978

	

p .22



REPORT : LOGO Learning and Teaching Style s

never seen before . I do not know in advance what the answers are . One of the most	 et_
exciting discoveries made by the children is just that : "You mean you really don' t
know how to do it", exclaimed one child in amazement and in reaction to a hundre d
remembered situations in which teachers put on the stance of " let's do it together "
while really knowing the answer in advance . For some children the prospect of an
honest relationship with the teacher is something new and inspiring . This environmen t
is especially good for developing such relationships because it is so "discovery rich" .
One of my goals is to convey to other teachers the possibility of this "teacher-and-
student-as-research collaborators" kind of relationship . The the extent that we can
achieve this, we see one way in which the effect of the computer presence goes beyon g
"using computers " . Its real impact is on the total culture of which teacher and chil d
are part .

The Skills a Child Might Use in Programming

Initial studies of young children allow me to construct a plausible list of skill s
which a child might need in order to construct a program . For example, imagine a chil d
writes a program in LOGO to draw a face lik e

Such a project involves the following elements :

(1) Setting up a plan for the projec t

(a) identifying the part s

(b) naming each par t

(c) picking a starting state for the turtle (in this case, starting a t
the center greatly simplifies the plan )

(2) Using procedures conceptually, e .g ., CIRCLE procedures

(3) Using inputs, message passing

(4) Scaling figures and rotating figure s

(5) Debugging the design, e .g ., recognizing deviation from the original plan
like eyes too big (so change input to circle) ; nose too far from center
(so either change turtle's heading or change turtle's position befor e
running circle procedure) .

ACM SIGCUE BULLETIN

	

July, 1978

	

p .23



REPORT : LOGO Learning and Teaching Styles

(6) Defining procedures formally (without inputs )

(7) Using define procedures as subprocedure s

(8) Recursively defining procedure s

(9) Debugging procedures, e .g ., recognizing that an instruction is missing ;
recognizing that a command is misspelled ; recognizing that the number s
input are revised .

I have observed all these elements in work with my first and second grade subjects .
Other elements of LOGO programming which have not been observed in such small children
but which seem to be worth trying to teach are :

(a) Defining procedures with input s
(b) Using conditional s
(c) Using debugging aid s

Developing Teaching Strategies in an Anthropomorphic Computer Cultur e

The development of teaching strategies as well as the accessibility of programmin g
skills are influenced by (and influence) how the system--the language, the devices, th e
debugging aids--can be used or modified to enhance the learning process . In this proces s
the researcher must decide what key ideas are to be emphasized and must be ready to add
to them . This demands sensitive judgment in distinguishing those difficulties a child
experiences which are intrinsic to the conceptual material from those difficulties whic h
arise from unfortunate aspects of the formalism of the computer language . In this
situation, the enormous advantage of an extensible language like LOGO (or SMALLTALK )
becomes apparent : BASIC is BASIC is BASIC and nothing much can be done about it ; the
interface between LOGO and the user can be changed by a teacher who knows only LOGO
(i .e ., isn't a systems programmer) .

Such considerations guided the development of LOGO as a programming environment t o
LOGO as a turtle based programming environment . We were able to take advantage o f
turtles and anthropomorphic and procedural thinking in several ways .

In turtle graphics geometric shapes are described in terms of the knowledge the
turtle has about itself in relation to its world . It can go forward or back and turn
right or left . So can a child. The child can act like the turtle . Thus, if we tell
the turtle to

FORWARD 50 (steps )
RIGHT 90 (degrees )
FORWARD 5 0
RIGHT 9 0
FORWARD 5 0
RIGHT 90
FORWARD 5 0
RIGHT 90

ACM SIGCUE BULLETIN

	

July, 1978

	

p .24



REPORT : LOGO Learning and Teaching Style s

the turtle would trace out a square of side length 50 . You would, too, if you carried
out those commands . Thus "playing turtle" follows from this . Being a turtle is a power-
ful heuristic and debugging principle and to put it into practice, children are encouraged
to walk in a square, observe their own actions, and translate them into turtle commands .

Playing turtle is also useful in encouraging children to "work through" puzzlement or
"cognitive dissonance" . For example, the set of commands previously given will caus e
the turtle to make a square no matter where it is positioned or headed . Since the child
might see the figure as a diamond or a "skewed square" playing with the procedure create s
interesting and provocative situations .

Once the child knows how to describe a square to the turtle, he must give the proces s
a name and link the name and the instructions together . Currently, if the child told the
computer to

SQUARE

the computer would respond

I DON°T KNOW HOW TO SQUARE

The " standard LOGO " formalism for remedying this to to define a new procedure by typin g

TO SQUARE
10 FD 5 0
20 RT 90 etc .

In my work at MIT with elementary school children I noticed that this process compounde d
two difficulties : (1) the conceptual difficulty inherent in the idea of defining a
procedure ; and (2) the accidental difficulty of remembering how to do this in LOGO . I
introduced the idea of an interactive computer aid for this purpose . The aid is invoke d
by typing the single word TEACH . It then prompts the child who can, so to speak, "teach"
the computer through the following transaction . I underline what the computer types :

TEACH
TEACH ME TO SQUARE
STEP 1 : FD 50
STEP 2 : RT 90

STEP 9 : END
NOW I KNOW HOW TO SQUARE

Now the turtle can make a square and the computer understands the word SQUARE, the chi d
can use it to create a new design where SQUARE is used as another LOGO word :

TO FLAG
1 FORWARD 5 0
2 SQUARE
END

ACM SIGCUE BULLETIN

	

July, 1978

	

p .25



REPORT : LOGO Learning and Teaching Styles

And now FLAG can be used to create designs :

F"I
I . . L ~_-

f .-- -

C
- -

As an extension of subprocedurizing, children are introduced to recursion . For example :

TO MANY-FLAG S
1 FLAG
2 RIGHT 10
3 MANY-FLAGS
END

To understand such a process, we ask children to play a "people procedure game" . For
example : when I say WOW, raise you hand and then lower it . Now I will say WOW severa l
times . The next step is to change WOW, add a command : this time raise your hand, lower
it and tell yourself out loud to WOW .

We play this game for a while and then go back to turtle procedures and apply the sam e
technique to the turtle .

At some point we extend "people procedures" to serve as models for non-turtl e
activities, "bridge activitie s " like learning to walk on stilts or juggle or solv e
puzzles, where we develop procedures, execute them, debug them, and refine them to fi t
individual learning styles .

Individual Styles of Learning and Teaching Strategie s

In preliminary work, I have observed that different children take over the computer in
different ways . They show different learning styles, different paths into the computer
work . Undoubtedly this bare statement is true for all learning ; what is special here is
that the plasticity of the computer allows the process to go further and become mor e
explicit . In working with computers there really are many paths to the same goal . More-
over, there are many equally great goals to pursue . Thus, children really do have t o
express and explore their own intellectual styles .

Although each child has a unique intellectual personality and the use of the compute r
allows us to respect it, we do, nevertheless, observe some regularities . I shall \
describe three learning styles which have emerged particularly clearly no t , only from my
own work with young children, but from work recently completed at the MIT-Brookline LOG O
project by D . Watt in his teaching of 8 sixth graders over a six week period .

ACM SIGCUE BULLETIN

	

July, 1978

	

p .26



REPORT : LOGO Learning and Teaching Style s

Style 1 : This child is a planner . He works from a complete formulation . For
example, he will design and implement a truck or a bear :

3

Style 2 : This child uses building blocks, subprocedures, and experiments wit h
their possibilities . He arrives at some goal which is not predefined through a series o f
trial and error steps . For example :

from

	

to

Style 3 : It is, perhaps, most difficult to develop teaching strategies for thi s
child since he defines his on goals which he will not verbalize . What he is exploring
and how he does it can easily be misinterpreted . His activities often look like turtl e

scribblings . He may "revert back" to changing the turtle's state by tiny increments or
he may use the same increments to all turtle commands (like FORWARD and LEFT) repeatedly .

The teaching methodology I have developed is based on a model of a child who, in th e
LOGO turtle context, might use, though to different degrees, all three of these learnin g

styles . In our initial contact, I try to "plant seeds" for all three . For example, I \
encourage a beginning student to drive the turtle around the screen in a series of direc t
commands with no goal other than to understand the turtle ;s behavior in its environment .

ACM SIGCUE BULLETIN

	

July, 1978

	

p .27



REPORT : LOGO Learning and Teaching Style s

But in the same initial session I suggest some concrete goal like : make the turtle wal k
in a square or, perhaps, having placed some "squares " on the screen or blocks on th e
floor, I ask the child to make the turtle touch them (knock the tower down, etc .) . In
this I elicit primarily style 3 with some hint at style 1 .

I facilitate style 2 by seizing on something interesting the child has just done an d
suggesting "teaching" it to the computer . Thus I encourage the child to procedurize, an d
thereby turn the turtle meanderings into repeatable patterns, procedures, building blocks ,
and then use these procedures as subprocedures to create unanticipated designs .

The beginning student would very quickly be asked to choose a design from a collectio n
built from a subprocedure familiar to the child or create his own design, and then develo p
procedures for getting the turtle to make the design . In this way children are exposed t o
style 1 .

I can illustrate both the pervasiveness of these styles and the way in which I wor k
with physical skills as bridge activities by the following anecdote in which we see th e
same styles in two different domains . Mar and Sco, third grade children from the Robert s
School in Cambridge, Massachusetts, were learning to walk on stilts at MIT . Mar had been
very resistent to procedural thinking in his computing activities and now when he wa s
learning to walk on stilts he again refused to procedurize . He just wanted to get up an d
get there and so tried to apply brute-force techniques . Sco, on the other hand, wa s
eager to use procedures in both cases . The result was : Mar, who prided himself on hi s
physical dexterity, was very much surprised when Sco, who was not so "coordinated" ,
learned to walk on stilts very quickly and very well . A side note on Sco : Although h e
appreciated procedural thinking, he resisted global planning, of developing procedure s
to accomplish a predetermined goal, until this experience . He was no less surprised
than Mar at his "victory" in the race to learn to walk on stilts, and carried the fruit s
of his triumph for a long time .

References

Brown, John Seely and Richard Burton, Diagnostic Models for Procedural Bugs in Basi c

Mathematics, BBN Rept . #3669, ICAI Rept . #8, Bolt, Beranek and Newman, Cambridge, M A

December 1977 .

Davis, Robert B ., "Selecting Mini-Procedures : The Conceptualization of Errors in Thinkin g

about Mathematics", J . of Children's Mathematical Behavior, Supplement No . 1 ,

Summer, 1976 .

Goldberg, Adele and Alan Kay, Teaching Smalltalk, Xerox, Palo Alto Res . Center, SSL 77-2 ,

Palo Alto, Calif ., June 1977 .

Inhelder, Barbel, Hermine Sinclair and Magali Bovet, Learning and the Development o f

Cognition, Harvard Univ . Press, 1974 .

Papert, Seymour, "Teaching Children Thinkin g" , Mathematics Teaching, no . 58, Spring 1972 .

Papert, Seymour and Cynthia Solomon, "Twenty Things to Do with a Compute r " , Educational

Technology, XII, 4, April 1972 .

ACM SIGCUE BULLETIN

	

July, 1978

	

p .28



REPORT : LOGO Learning and Teaching Style s

Papert, Seymour, Uses of Technology to Enhance Education, LOGO Memo #8, Mass . Institut e
of Technology, Artificial Intelligence Laboratory, Cambridge, MA, June 1973 .

Solomon, Cynthia J ., Problem-Solving in an Anthropomorphic Computer Culture, A .M . Thesis ,
Boston University, May 1976 .

LOGO REPORTS AVAILABL E

The following reports are available in German from the LOGO research group i n
Darmstadt, Germany . The work was done during the years 1974 through 1978 . Please
write them at :

Forschungsgruppe CUU
Projekt PROKO P
Frankfurter Str . 24
6100 Darmstad t
West German y

(1) Kling, U ., et .al . : Computer as a tool in processes of active learning ,
Progress Report . Describes work during the first research period from
1974 through 1976 .

(2) Fischer, G . : The solution of complex problems by naive users through inter -
active programming . 1977 Approx . 250 pages . This thesis defines an integrated
view of computer science for naive users which emphasizes problem solvings ,
model building and learning to learn . Part one analyses the role of arti-
ficial intelligence and computer science in educational applications and th e
case studies of part two illustrate the derival basic concepts of programmin g
and problem solving .

(3) Fischer, G . : Problem solving with the computer : Vol . 1 . Introduction t o
interactive programming, 1975 . This collection of lecture notes and handout s
was prepared for a course about programming and problem solving with th e
computer ; it has been extended and may be used as a workbook to teach a n
introductory course in a LOGO-like environment .

(4) Boecker, H . -D . & G . Fischer : Problem solving with the computer : Vol . 2 :
Problems 1978, approx . 500 pages . This report consists of five parts and
presents detailed case studies of complex problem solving with the compute r
in the fields of mathematics, linguistics, computer science, artificia l
intelligence and gaming . They are based upon the theoretical work describe d
in part one of (2) and represent a collection of ideas and programming projects . '.

(5) Boecker, H .-D : LOGO-Manual, 1977, approx . 120 pages .

(6) Laurenze, A ., U . Kling : Report on experimental LOGO course with 11 to 13 yea r

old kid .

	

1976 . Approx . 80 pages . Course material, documentation and

evaluation .

ACM SIGCUE BULLETIN

	

July, 1978

	

p .29


