REPORT: LOGO Learning and Teaching Styles

TeacHing Youne CHILDREN To ProcraM IN A LOGO TurTLE
CoMPUTER CULTURE

Cynthia J. Solomon*
80 Ellery Street
Cambridge, MA 02138

What programming knowledge and skills can a young child acquire? This question is no
longer shocking although it remains unanswered. Now that the computer presence is clearly
a growing part of our lives, the notion that 6 and 7 year olds could learn to program does
not bring scorn and doubt into audiences' minds.

This paper describes a particular computer culture and enviromment in which young
children have learned to program. The child as problem-solver is discussed in terms of
three identifiable cognitive styles; and finally, some teaching strategies are suggested
which take into account these different learning styles.

The Computer Culture

"LOGO" is the name of a programming language, but it is also used as the name of an
environment, a culture, a way of thinking about computers and about learning and about
putting the two together. The environment is made of ideas, of things, and of people.
The things include not only the computer, but computer controlled devices like turtles.
There are mechanical turtles which move along the floor and are often equipped with touch
or light sensors, and there are also graphics turtles, which live on TV-like screens where
they draw in phosphor white or in multi-color. The computer system which gives life to
all of this understands the LOGO language. The computer and the programming language
play a vital role in creating an exciting atmosphere where programs, people, turtles and
other computer controlled devices interact with one another and learn from one another.
In the environment people become researchers, and actions and ideas take on animate
qualities. Ideas from computer science like naming, procedurization, and debugging
become intermixed with anthropomorphic thinking to become lively tools in problem-solving

situations.

Different turtle types naturally develop distinct attributes, but there are also common
elements. For example, the turtle's state is its position and its heading. 1Its state can
be changed by either telling it to go FORWARD (or BACK) a number of steps or telling it to

turn RTGHT (or TEFTY) some pumber of degrges. Tt capn also Jegve a trgce (PENDQUN) gf its |
o e ————

—F T

path or not (PENUP).

REPORT: LOGO Learning and Teaching Styles

While the culture is closely tied to turtles, it is certainly more universal. The
turtles were invented as vehicles to convey this culture to beginners. They make certain
images more vivid and certain ideas more concrete. But the goal is to convey these ideas
and images, to make them real, comfortable, personal for a beginner of any age.

A Functional Description

Functionally, the LOGO environment is made up of the following:
(1) a computer
(2) a programming language and an operating system

(3) a collection of computer peripherals, usually including graphics and
turtles

(4) a collection of projects

(5) a meta-language - a consistent way of talking about the language, the
projects, etc.

(6) a relationship between teacher and learner

(7) a collection of '"bridge activities" like juggling, puzzles, etc.

All of these components are interdependent and the special virtues of the environment
follow from their coherence with one another. Taken individually, they have no great
merit or utility. For example, one would expect very limited educational benefits to
come from teaching programming, even LOGO programming, in an "abstract" environment or
from using turtles as toys without a vision derived from the computer culture.

The design of the LOGO environment as a whole is strongly influenced by certain general

ideas of which three are particularly relevant to work with young children: procedurization,
anthropomorphization, and debugging. The following three sections discuss these in turn.

A Procedural View of the World

A procedural view of the world touches upon all aspects of our culture. Taken in its
simplest sense, a procedure is a description of how to do something, and when applied to
the world, leads to a perception of complicated processes in terms of subprocesses. That
is, complicated processes are reduced to an interconnected cluster of simpler processes,
each of which can be clearly described. In the LOGO world, whether a child is learning
to walk on stilts or to juggle three balls or to make the turtle walk in a square, the
main intellectual activity is to look for a set of procedures which, when knit together,
will do the job. The intellectual environment we are describing is designed to exploit
this commonality in order to channel prior real-world procedural knowledge into the
service of mastering the computer and also to channel whatever is so learned back into
improvements of knowledge about the non-computer world.

ACM SIGCUE BULLETIN July, 1978 p.21

REPORT: LOGO Learning and Teaching Styles

never seen before. I do not know in advance what the answers are. One of the most
exciting discoveries made by the children is just that: 'You mean you really don't
know how to do it", exclaimed one child in amazement and in reaction to a hundred
remembered situations in which teachers put on the stance of "let's do it together"
while really knowing the answer in advance. For some children the prospect of an
honest relationship with the teacher is something new and inspiring. This environment
is especially good for developing such relationships because it is so ''discovery rich".
One of my goals is to convey to other teachers the possibility of this "teacher-and-
student-as-research collaborators” kind of relationship. The the extent that we can
achieve this, we see one way in which the effect of the computer presence goes beyong
"using computers''. Its real impact is on the total culture of which teacher and child
are part.

The Skills a Child Might Use in Programming

Initial studies of young children allow me to construct a plausible list of skills
which a child might need in order to construct a program. For example, imagine a child
writes a program in LOGO to draw a face like

Such a project involves the following elements:
(1) Setting up a plan for the project
(a) ddentifying the parts
(b) naming each part

(¢) picking a starting state for the turtle (in this case, starting at
the center greatly simplifies the plan)

(2) Using procedures conceptually, e.g., CIRCLE procedures

(3) Using inputs, message passing

(4) Scaling figures and rotating figures

(5) Debugging the design, e.g., recognizing deviation from the original plan
like eyes too big (so change input to circle); nose too far from center

(so either change turtle's heading or change turtle's position before
running circle procedure).

ACM SIGCUE BULLETIN July, 1978 p.23

REPORT: LOGO Learning and Teaching Styles

(6) Defining procedures formally (without inputs)

(7) Using define procedures as subprocedures

(8) Recursively defining procedures

(9) Debugging procedures, e.g., recognizing that an instruction is missing;
recognizing that a command is misgpelled; recognizing that the numbers
input are revised.

I have observed all these elements in work with my first and second grade subjects.
Other elements of LOGO programming which have not been observed in such small children
but which seem to be worth trying to teach are:

(a) Defining procedures with inputs

(b) Using conditionals
(c) Using debugging aids

Developing Teaching Strategies in an Anthropomorphic Computer Culture

The development of teaching strategies as well as the accessibility of programming
skills are influenced by (and influence) how the system—-the language, the devices, the
debugging aids-~—can be used or modified to enhance the learning process. In this process
the researcher must decide what key ideas are to be emphasized and must be ready to add
to them. This demands sensitive judgment in distinguishing those difficulties a child
N gvnariencas which greintrivneig, tn tha rancentual_matrard ')T_F_rﬂv-@ _thggg.@ji’é Hﬂ]gﬁ%

; (v O B

PRSP o O R e

situation, the enormous advantage of an extensible language like LOGO (or SMALLTALK)
becomes apparent: BASIC is BASIC is BASIC and nothing much can be done about it; the
interface between LOGO and the user can be changed by a teacher who knows only LOGO
(i.e., isn't a systems programmer).

Such considerations guided the development of LOGO as a programming environment to
LOGO as a turtle based programming environment. We were able to take advantage of
turtles and anthropomorphic and procedural thinking in several ways.

In turtle graphics geometric shapes are described in terms of the knowledge the
turtle has about itself in relation to its world. It can go forward or back and turn
right or left. So can a child. The child can act like the turtle. Thus, if we tell
the turtle to

FORWARD 50 (steps)

RIGHT 90 (degrees)

FORWARD 50

RIGHT 90 j

TIAATTTATYIN I

REPORT: LOGO Learning and Teaching Styles

the turtle would trace out a square of side length 50. You would, too, if you carried

out those commands. Thus "playing turtle' follows from this. Being a turtle is a power-
ful heuristic and debugging principle and to put it into practice, children are encouraged
to walk in a square, observe their own actions, and translate them into turtle commands.

Playing turtle is also useful in encouraging children to "work through'" puzzlement or
"cognitive dissonance'. For example, the set of commands previously given will cause
the turtle to make a square no matter where it is positioned or headed. Since the child
might see the figure as a diamond or a "skewed square' playing with the procedure creates
interesting and provocative situations.

Once the child knows how to describe a square to the turtle, he must give the process
a name and link the name and the instructions together. Currently, if the child told the
computer to

SQUARE
the computer would respond
I DON'T KNOW HOW TO SQUARE
The "standard LOGO" formalism for remedying this to to define a new procedure by typing

TO SQUARE
10 ¥D 50
20 RT 90 etc.

In my work at MIT with elementary school children I noticed that this process compounded
two difficulties: (1) the conceptual difficulty inherent in the idea of defining a
procedure; and (2) the accidental difficulty of remembering how to do this in LOGO. I
introduced the idea of an interactive computer aid for this purpose. The aid is invoked
by typing the single word TEACH. It then prompts the child who can, so to speak, '"teach"
the computer through the following transaction. I underline what the computer types:

TEACH

TEACH ME TO SQUARE
STEP 1: FD 50
STEP 2: RT 90

STEP 9: END
NOW I KNOW HOW TO SQUARE

Now the turtle can make a square and the computer understands the word SQUARE, the child
can use it to create a new design where SQUARE isused as another LOGO word:

TO FLAG '
1 FORWARD 50
2 SQUARE f
END

ACM SIGCUE BULLETIN July, 1978 p.25

REPORT: LOGO Learning and Teaching Styles

And now FLAG can be used to create designs:

Lo e {s...‘__‘
sihe
!

As an extension of subprocedurizing, children are introduced to recursion. For example:

TO MANY-FLAGS

1 FLAG

2 RIGHT 10

3 MANY-FLAGS
END

To understand such a process, we ask children to play a '"people procedure game'". For
example: when I say WOW, raise you hand and then lower it. Now I will say WOW several
times. The next step is to change WOW, add a command: this time raise your hand, lower
it and tell yourself out loud to WOW.

We play this game for a while and then go back to turtle procedures and apply the same
technique to the turtle.

At some point we extend "people procedures" to serve as models for non-turtle
activities, "bridge activities' like learning to walk on stilts or juggle or solve
puzzles, where we develop procedures, execute them, debug them, and refine them to fit
individual learning styles.

Individual Styles of Learning and Teaching Strategies

In preliminary work, I have observed that different children take over the computer in
different ways. They show different learning styles, different paths into the computer
work. Undoubtedly this bare statement is true for all learning; what is special here is
that the plasticity of the computer allows the process to go further and become more
explicit. In working with computers there really are many paths to the same goal. More-
over, there are many equally great goals to pursue. Thus, children really do have to
express and explore their own intellectual styles.

Although each child has a unique intellectual personality and the use of the computer
allows us to respect it, we do, nevertheless, observe some regularities. I shall \
describe three learning styles which have emerged particularly clearly not only from my
own work with young children, but from work recently completed at the MIT-Brookline LOGO
project by D. Watt in his teaching of 8 sixth graders over a six week period.

ACM SIGCUE BULLETIN July, 1978 p.26

REPORT: LOGO Learning and Teaching Styles

But in the same initial session I suggest some concrete goal like: make the turtle walk
in a square or, perhaps, having placed some '"squares'" on the screen or blocks on the
floor, I ask the child to make the turtle touch them (knock the tower down, etc.). In
this I elicit primarily style 3 with some hint at style 1.

I facilitate style 2 by seizing on something interesting the child has just done and
suggesting ''teaching" it to the computer. Thus I encourage the child to procedurize, and
thereby turn the turtle meanderings into repeatable patterns, procedures, building blocks,
and then use these procedures as subprocedures tocreate unanticipated designs.

The beginning student would very quickly be asked to choose a design from a collection
built from a subprocedure familiar to the child or create his own design, and then develop
procedures for getting the turtle to make the design. In this way children are exposed to
style 1.

I can illustrate both the pervasiveness of these styles and the way in which I work
with physical skills as bridge activities by the following anecdote in which we see the
same styles in two different domains. Mar and Sco, third grade children from the Roberts
School in Cambridge, Massachusetts, were learning to walk on stilts at MIT. Mar had been
very resistent to procedural thinking in his computing activities and now when he was
learning to walk on stilts he again refused to procedurize. He just wanted to get up and
get there and so tried to apply brute-force techniques. Sco, on the other hand, was
eager to use procedures in both cases. The result was: Mar, who prided himself on his
physical dexterity, was very much surprised when Sco, who was not so "coordinated",
learned to walk on stilts very quickly and very well., A side note on Sco: Although he
appreciated procedural thinking, he resisted global planning, of developing procedures
to accomplish a predetermined goal, until this experience. He was no less surprised
than Mar at his "victory" in the race to learn to walk on stilts, and carried the fruits
of his triumph for a long time.

References

Brown, John Seely and Richard Burton, Diagnostic Models for Procedural Bugs in Basic
Mathematics, BBN Rept. #3669, ICAI Rept. #8, Bolt, Beranek and Newman, Cambridge, MA
December 1977.

Davis, Robert B., "Selecting Mini-Procedures: The Conceptualization of Errors in Thinking
about Mathematics", J. of Children's Mathematical Behavior, Supplement No. 1,
Summer, 1976.

Goldberg, Adele and Alan Kay, Teaching Smalltalk, Xerox, Palo Alto Res. Center, SSL 77-2,
Palo Alto, Calif., June 1977.

Inhelder, Barbel, Hermine Sinclair and Magali Bovet, Learning and the Development of
Cognition, Harvard Univ. Press, 1974.

Papert, Seymour, "Teaching Children Thinking", Mathematics Teaching, no. 58, Spring 1972.

Papert, Seymour and Cynthia Solomon, 'Twenty Things to Do with a Computer', Educational
Technology, XII, 4, April 1972,

ACM SIGCUE BULLETIN) July, 1978 p.28

REPORT: LOGO Learning and Teaching Styles

Papert, Seymour, Uses of Technology to Enhance Education, LOGO Memo #8, Mass. Institute
of Technology, Artificial Intelligence Laboratory, Cambridge, MA, June 1973.

Solomon, Cynthia J., Problem-Solving in an Anthropomorphic Computer Culture, A.M. Thesis,
Boston University, May 1976.

LOGO RepoRTS AVAILABLE

The following reports are available in German from the LOGO research group in
Darmstadt, Germany. The work was done during the years 1974 through 1978. Please
write them at:

Forschungsgruppe CUU
Projekt PROKOP
Frankfurter Str. 24
6100 Darmstadt

West Germany

(1) Kling, U., et.al.: Computer as a tool in processes of active learning,
Progress Report. Describes work during the first research period from
1974 through 1976.

(2) Fischer, G.: The solution of complex problems by naive users through inter-
active programming. 1977 Approx. 250 pages. This thesis defines an integrated
view of computer science for naive users which emphasizes problem solvings,
model building and learning to learn. Part one analyses the role of arti-
ficial intelligence and computer science in educational applications and the
case studies of part two illustrate the derival basic concepts of programming
and problem solving. -

(3) Fischer, G.: Problem solving with the computer: Vol. 1. Introduction to
interactive programming, 1975. This collection of lecture notes and handouts
was prepared for a course about programming and problém solving with the
computer; it has been extended and may be used as a workbook to teach an
introductory course in a LOGO-like environment.

(4) Boecker, H. -D. & G. Fischer: Problem solving with the computer: Vol. 2:
Problems 1978, approx. 500 pages. This report comnsists of five parts and
presents detailed case studies of complex problem solving with the computer
in the fields of mathematics, linguistics, computer science, artificial
intelligence and gaming. They are based upon the theoretical work described
in part one of (2) and represent a collection of ideas and programming projects.

(5) Boecker, H.-D: LOGO-Manual, 1977, approx. 120 pages.

(6) Laurenze, A., U. Kling: Report on experimental LOGO course with 11 to 13 year
old kid. 1976. Approx. 80 pages. Course material, documentation and

evaluation.

ACM SIGCUE BULLETIN July, 1978 p.29

